Mark Scheme (Results)

October 2020

Pearson Edexcel IAL In Statistics 1
Paper WST03/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020
Publications Code WST03_01_2010_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks
1. (a)		
	$\mathrm{E}(2 \bar{X})=2 \mathrm{E}(\bar{X})=\frac{2(1+\alpha)}{2}$	M1
	$=1+\alpha \neq \alpha$ (therefore $2 \bar{X}$ is a biased estimator of α)	A1
		(2)
(b)	$\bar{x}=6 \quad 2 \bar{x}-1=$	M1
	11	A1
		(2)
		Total 4
	Notes	
(a) (b)	M1 for use of $2 \times \frac{1+\alpha}{2}$ A1 cso correct comparison with α and no incorrect working seen. $\frac{1+\alpha}{2} \neq \alpha \text { is M0A0 }$ M1 for attempt at \bar{x} and use of $2 \bar{x}-1$ or ft use of their $\mathrm{E}(\bar{X})$ from part (a) to find an estimate for α A1 11 cao	

Question Number	Scheme	Marks
5.		
(a)	$s_{A}^{2}=\frac{1}{39}\left(790258-140.4^{2} \times 40\right) \quad s_{B}^{2}=\frac{1}{31}\left(581430-134.7^{2} \times 32\right)$	M1
	$=45.4256 \ldots$ awrt 45.4 $=26.4232 \ldots$ awrt 26.4	A1 A1
		(3)
(b)	$\mathrm{H}_{0}: \mu_{A}-\mu_{B}=5$	B1
	$\mathrm{H}_{1}: \mu_{A}-\mu_{B}>5$	B1
	s.e. $=\sqrt{\frac{45.4256 \ldots}{40}+\frac{26.4232 \ldots}{32}}(=$ awrt 1.4)	M1
	$z=\frac{ \pm(140.4-134.7-5)}{\text { s.e. }}=\operatorname{awrt} 0.50$	dM1 A1
	c.v. $=1.6449$	B1
	(Do not reject H_{0}) Insufficient evidence to support the greengrocer's belief. (Insufficient evidence that the difference in weight between type A oranges and type B oranges is over 5 grams).	A1ft
		(7)
(c)	Large sample sizes so...	
	Sample means are normally distributed (CLT)	B1
	$s_{A}^{2}=\sigma_{A}^{2}$ and $s_{B}^{2}=\sigma_{B}^{2}$	B1
		(2)
		Total 12
	Notes	
(a)	M1 one correct expression A1 either awrt 45.4 or awrt 26.4 A1 both awrt 45.4 and awrt 26.4	
(b)	B1 Allow equivalent rearrangements. Must use μ B1 Allow equivalent rearrangements. Must use μ. For both hypotheses do not allow e.g. μ_{1} and μ_{2} unless each has been clearly de	ned
	M1 attempt at standard error (allow one slip) ft their (a) dM1 standardising with ($140.4-134.7-5$) and their s.e. (dep on previous M1) A1 for 0.5 or awrt 0.50 B1 correct c.v. 1.6449 or better. Allow -1.6449 or better with use of $\mu_{B}-\mu_{A}$ Allow $p=$ awrt 0.309 Alft correct ft conclusion in context with either greengrocer's belief (oe) or diffe weights (oe) dependent on all B and M marks scored.	nce in
(c)	B1 must comment on both sample means, \bar{A} and \bar{B} B1 must comment on both variances/standard deviations	

Question Number	Scheme	Marks
6. (a)		
	$\bar{T} \sim \mathrm{~N}\left(4, \frac{4}{35}\right)$	M1 A1
		(2)
(b)	$\bar{K} \sim \mathrm{~N}\left(\lambda, \frac{\lambda}{40}\right)$	M1
	$2 \times 2.5758 \times \sqrt{\frac{\lambda}{40}}=2.6$	B1 M1
	$\lambda=\mathrm{awrt} \underline{\underline{10.2}}$	A1
		(4)
(c)	$2 \times 0.99 \times 0.01$	M1
	= $\mathbf{0 . 0 1 9 8}$	A1
		(2)
		Total 8
	Notes	
(a)	M1 for Normal distribution A1 for correct mean and variance (allow $\mathrm{N}(4$, awrt 0.114$)$)	
(b)	M1 for use of $\frac{\lambda}{40}$ if $\lambda=\sigma$ is used, then M0 B1 for ± 2.5758 (may be implied by sight of $10.188 \ldots$..) M1 for use of $2 \times z \times \frac{\sigma^{\prime}}{\sqrt{40}}=2.6$ with $\|z\|>2$ A1 awrt 10.2 (an answer of $10.15 \ldots$ or awrt 10.2 on its own sco SC: Use of $\sqrt{\lambda}$ instead of λ leading to an answer of awrt 3.1 M1 for $2 p(1-p)$ for any $p \quad 0<p<1$ A1 0.0198	M1A0

Question Number	Scheme	Marks
7.		
	$C_{1}+C_{2}+C_{3} \sim \mathrm{~N}\left(480,3 \times 1.25^{2}\right)$	M1 A1
	$\mathrm{P}\left(C_{1}+C_{2}+C_{3}>475.8\right)=\mathrm{P}\left(Z>\frac{475.8-480}{\sqrt{3 \times 1.25^{2}}}(=-1.94)\right)$	M1
	$=\mathrm{awrt} \underline{0.974}$	A1
		(4)
(b)	$W=T_{1}+T_{2}+T_{3}+T_{4}+T_{5}+C_{1}+C_{2} \sim \mathrm{~N}\left(5 \times 60+2 \times 160,5 \times 2^{2}+2 \times 1.25^{2}\right)$	M1 A1
	$\mathrm{P}(W>625)=\mathrm{P}\left(Z>\frac{625-620}{\sqrt{23.125}}(=1.03975 \ldots)\right)$	M1
	$=$ awrt $\underline{\underline{0.149}}$	A1
		(4)
(c)	$Y=(n-1) T_{1}-\sum_{r=2}^{n} T_{r}$	
	$Y \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$	
	$\mu=(n-1) \times 60-(n-1) \times 60$ [=0]	M1 A1
	$\sigma^{2}=(n-1)^{2} \times 4+(n-1) \times 4\left[=4 n^{2}-4 n\right]$	M1 A1
	$\frac{40-0}{\sqrt{4 n^{2}-4 n}}=1.38$	M1 B1
	$4 n^{2}-4 n-840(.159 \ldots)=0$	dM1
	$n=15$	A1
		(8)
		Total 16
	Notes	
(a)	M1 for setting up Normal distribution with mean 480 A1 for correct expression for variance $(=4.6875)$ or for standard deviation $(=2.165 \ldots)$ M1 standardising with $475.8,480$ and their standard deviation (their standard deviation $\neq 3.75$) A1 awrt 0.974 M1 for setting up Normal distribution with mean 620 A1 for correct expression for variance ($=23.125$) or for standard deviation ($=4.8088 \ldots$) M1 standardising with 625,620 and their standard deviation A1 awrt 0.149 M1 for a single combined normal distribution (may be implied by a single standardisation) A1 correct expression for μ M1 for use of $a^{2} \times 4+a \times 4$ A1 correct expression for σ^{2} M1 standardising with their mean and their $\mathrm{sd}=z$ where $1<\|z\|<1.5$ B1 awrt 1.38 dM1 solving their 3TQ (working must be shown if answer is incorrect) (dependent upon $2^{\text {nd }} \mathrm{M} 1$) A1 15 cao (must reject -14 if found). Must come from compatible signs in standardisation.	
(b)		
(c)		

